2013 Colorado Society of Pathology

Pitfalls in the diagnosis of well-differentiated hepatocellular lesions

Sanjay Kakar, MD University of California, San Francisco

Outline

- Hepatocellular adenoma: new WHO classification
- HCA vs. focal nodular hyperplasia
 HCA vs. well-differentiated HCC

Benign hepatocellular lesions: pre-1990

- Focal nodular hyperplasia
- Hepatocellular adenoma

FNH vs. HCA Focal nodular Hepatocellular hyperplasia adenoma Central scar Present Absent Fibrous septa Typically present Typically absent Nodular Present Absent architecture Ductular **Generally prominent** Absent reaction Clonality Polyclonal Monoclonal

Multiple focal nodular hyperplasia of the liver associated with vascular malformations of various organs and neoplasia of the brain: a new syndrome. Waless R. Bitrochi, S. Bilbao, J. Feel, M. Heightrobs E.J. Roberts E.A. Chlasson D. Telangiectatic FNH

Benign hepatocellular lesions: 1990s

- Focal nodular hyperplasia
 Telangiectatic FNH
- Hepatocellular adenoma

Hepatocellular adenoma

The French Revolution

Telangiectatic FNH

- Clonality studies: Monoclonal
- · Protein profiling: cluster with adenomas
- · Imaging: resembles adenoma

Reclassified as telangiectatic adenoma

- Ductular reaction
- · Fibrous septa with dystrophic arterioles
- · Telangiectasia, inflammatory infiltrate

Paradis, Gastroenterology, 2004

Benign hepatocellular lesions: pre-2008

- Focal nodular hyperplasia
- Hepatocellular adenoma
 Telangiectatic or variant adenoma

Genotype–Phenotype Correlation in Hepatocellular Adenoma: New Classification and Relationship With HCC

Jessica Zucman-Rossi, Emmanuelle Jeannot, Jeanne Tran Van Nhieu, Jean-Yves Scoazec, Catherine Guettier, Sandra Rebouisson, Yamnick Bacq, Semmanuelle Leteurtre, Valérie Paradis, Sophie Michalak, Dominique Wendum, Laurence Chiche, Monique Fabre, Ju Lucille Mellotte, J Christophe Laurent, La Christian Partensky, J Denis Castaing, Elie Serge Zafarani, P Perre Laurent-Puig, J Charles Balabaud, L. Hander, Laurent-Puig, J Charles Balabaud, L. Hander, Sagel A. S.

Hepatocellular adenomas are benign tumors that can be difficult to diagnose. To refine their classification, we performed a comprehensive analysis of their genetic, pathological, and clinical features. A multicentric series of 96 liver tumors with a firm or possible diagnosis of hepatocyle nuclear factor 1 α (HNF1 α) and β -catenin were sequenced. No tumors were mutated in both HNF1 α and β -catenin enabling tumors to be classified into 3 groups, according to genotype. Tumors with HNF1 α nutations formed the most important group of adenomas (44 cases). They were phenotypically characterized by marked steatosis (P < 10 $^{-5}$), lac of cytological abnormalities (P < 10 $^{-5}$), and no inflammatory infiltrates (P < 10 $^{-5}$). In contrast, the group of tumors defined by β -catenin activation included 13 lesions with frequent cytological abnormalities and P caused—galandiar formation (P < 10 $^{-5}$). The third group of tumors without mutation was divided into two subgroups based on the

Hepatology. 2006;43:515-24

HCA: W	VHO classification	n 2010
HNF-1α inactivated	β-catenin activated	Inflammatory
HNF-1α mutation	β-catenin mutation	JAK/STAT pathway
Women, OC use Familial	40% in men Androgens	Women (OCs), men Obesity, diabetes
Marked steatosis, no atypia	Pseudoacinar, cytologic atypia, small cell change	Inflammation, sinusoidal dilatation, ductular reaction
HCC rare		HCC rare

Mutation-negative cases

- Inflammatory: Similar to telangiectatic adenoma
- Non-inflammatory: no inflammation or sinusoidal dilatation

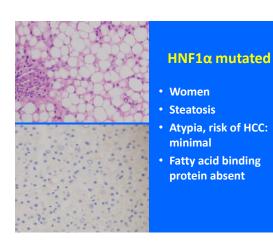
	HNF-1α mutated	β-catenin mutated	Mutation negative	
HNF-1α mutated	β-catenin mutated	Mutation –ve		
		IL-6 receptor signalling		

Hepatocellular adenoma

The French Revolution 2006: part 2

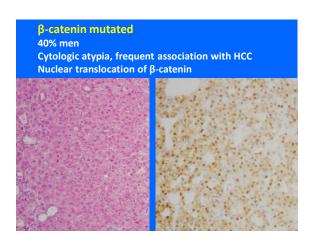
Hepatocellular Adenoma Subtype Classification Using Molecular Markers and Immunohistochemistry

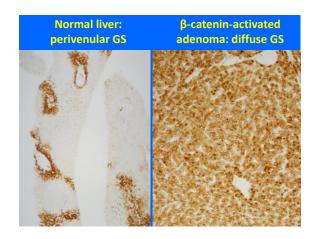
Paulette Bioulac-Sage, *1-2 Sandra Rebouissou, *5.4 Cristel Thomas 3.4 Jean-Frédéric Blanc, *25 Jean Saric, ⁶ Antonio Sa Cunha, ⁶ Anne Rullier, ¹-2 Gaëlle Cubel, ² Gabrielle Couchy, ^{5,4} Sandrine Imbeaud, ⁷ Charles Balabaud, ^{2,5} and Jessica Zucman-Rossi^{5,4}

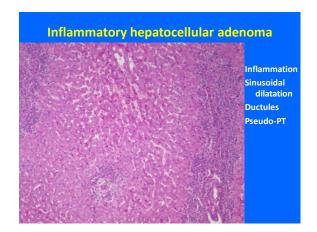

Hepatocellular adenomas (HCA) with activated β -catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymense chain reaction QRT-PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (RHNF) and β -Catenini mutations as well as inflammatory phenotype. Quantitative RT-PCR showed that FABP! (liver fatty acid binding protein) and UCP2EF were downregulated in HNF1ca-inactivated HCA/P = 0.0002; GLUI. (glautamine synthetase) and GPR49 overexpression were associated with β -catenin-activating mutations ($P \le 0.0005$), and S442 (serum anyloid A2) and CRP (C-reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver-farry acid binding protein (L-FABP) expression rightly indicated HNF1er mutation (100% sensitivity) and specificity), the combination of glutamine synthetase overexpression and nuclear β -catenin staining were excellent predictors of β -catenin-activating mutation (85% sensitivity) and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated mununohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangicctitic phenotype (P < 0.001), high body mass index, and alcohol intake ($P \le 0.04$). Previously described associations were nonfirmed and in particular the significant associations between B-catenins-activated HCA and hepez confirmed and in particular the significant association between B-catenin-activated HCA and hepez confirmed and in particular the significant association between B-catenins-activated HCA and hepez confirmed and in particular the significant association between B-catenins-activated HCA and h

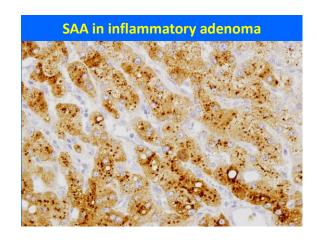
Hepatology. 2007 ;46:740-8

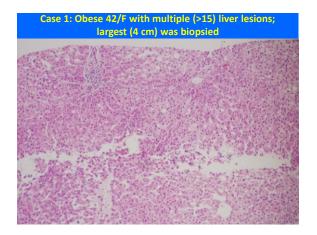
HCA: immunohistochemistry

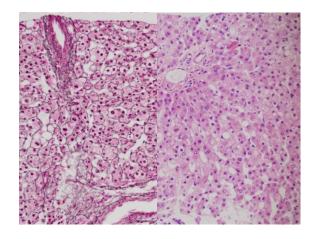

HNF-1α mutated	Inflammatory	β-catenin mutated
Fatty acid binding protein (FABP)	C-reactive protein (CRP) Serum amyloid associated protein (SAA)	β-catenin Glutamine synthetase (GS)
FABP negative	CRP+ SAA+	Nuclear β- catenin Diffuse GS

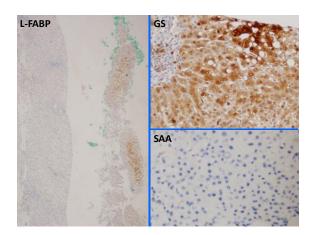

Unclassified (5-10%): no known defining features

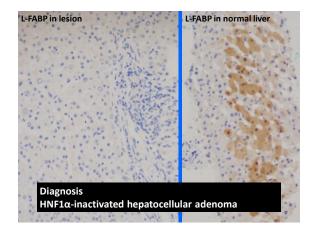

HCA: immunohistochemistry


Fabp negative	HNF-1α mutated	β-catenin mutated	Inflammatory	Unclassified
SAA+	binding protein	Glutamine	-Serum amyloid associated	
	FABP negative		··	

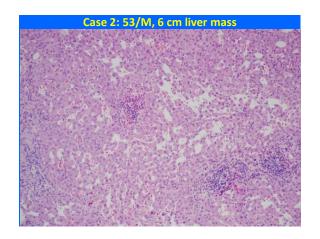

Beta-catenin	
mutated	Inflammatory
a-catenin tamine synthetase	-C reactive protein (CRP) -Serum amyloid associated protein (SAA)
lear beta-catenin use GS	CRP+ SAA+

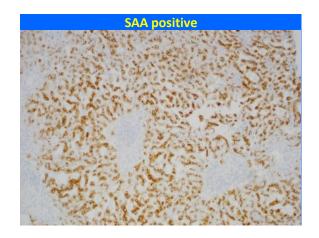


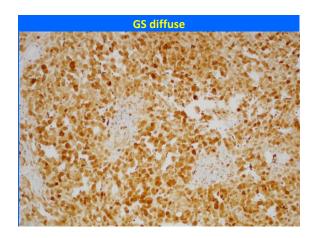



HCA: V	VHO classificati	ion 2010
HNF-1α inactivated	Inflammatory	β-catenin activated
35-50%	40-50%	10%
Women, OC use	Women (OCs), men Obesity, diabetes	40% in men Androgens, glycogen storage disease
Marked steatosis, no atypia	Inflammation, sinusoidal dilatation, ductular reaction	Pseudoacinar, small cell change
HCC rare	HCC rare	HCC 40%
FABP negative	SAA positive CRP positive	Nuclear β-catenin Diffuse GS
Unclassified (5	-10%): no known	defining features

HCA classification: immunohistochemistry				
	L-FABP	SAA CRP	β-catenin	GS
HNF-1α inactivated	negative	negative	membranous	peri- vascular
Inflammatory	cytoplasmic	positive	membranous	peri- vascular
β-catenin activated	cytoplasmic	negative	nuclear	diffuse
Unclassified	cytoplasmic	negative	membranous	peri- vascular

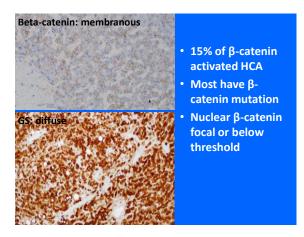


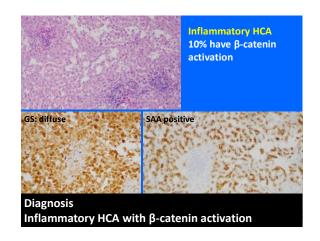

Hepatic adenomatosis


- By definition, ≥10 adenomas
- Young women
- Most are $HNF1\alpha$ -inactivated or inflammatory
- Pathogenesis

Obesity, less strong association with OCs Germ line $\mbox{HNF1}\alpha$ mutations

Mana	gement of HCA
Management	Tumor characteristics
Resection	Women: solitary HCA ≥5 cm Men (?women>50 years): all cases β-catenin activated Glycogen storage disease
Conservative with annual surveillance	Solitary HCA <5 cm
Conservative with annual surveillance	Multiple HCAs or adenomatosis, depending on size
Conservative with	•


Questions


β-catenin membranous, GS diffuse

• Does this represent β-catenin activation?

SAA+ and GS diffuse

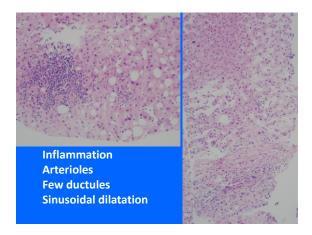
• Is this inflammatory HCA or β-catenin activated HCA?

Immunostaining variations in HCA

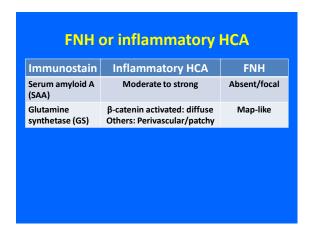
Variation	Interpretation
Membranous $\beta\text{-catenin, diffuse GS}$	β-catenin activation
SAA positive, diffuse GS, $\underline{+}$ nuclear β -catenin	β-catenin activation
Nuclear β -catenin in few tumor cells	β-catenin activation
LFABP patchy; negative in some areas	Does not support HNF1 α -inactivated HCA
Morphology not typical of inflammatory HCA, SAA positive	Inflammatory HCA
Inflammatory HCA by morphology, SAA negative	Inflammatory HCA

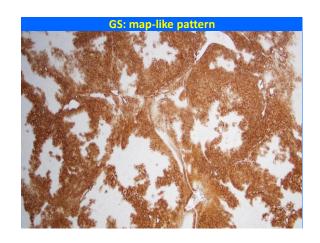
Outline

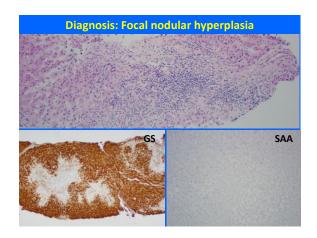

- Hepatocellular adenoma: new WHO classification
- HCA vs. focal nodular hyperplasia
 HCA vs. well-differentiated HCC


HCA vs. FNH: clinical significance

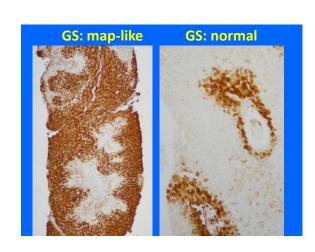
Focal nodular hyperplasia	Hepatocellular adenoma
Non-neoplastic	Neoplastic
No surgery in most cases	Surgery if high risk features: Male, size >5 cm
Large, symptomatic, atypical features	Risk of hemorrhage, associated HCC

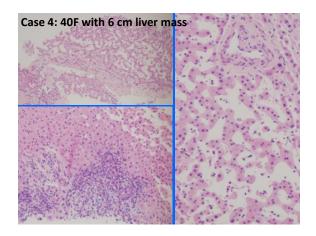

Case 3

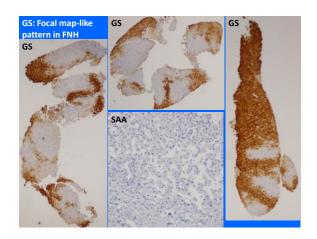

- 32 year old woman on OCs
- Ultrasound for workup of abdominal pain
- 5 cm liver mass, suggestive of FNH

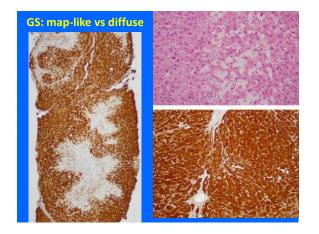


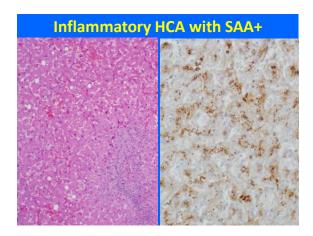
FNH or inflammatory HCA

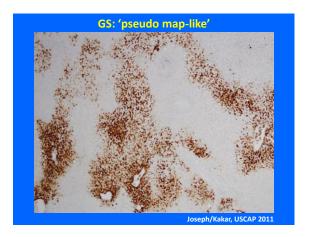


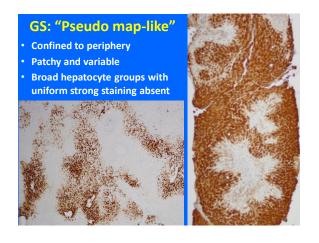


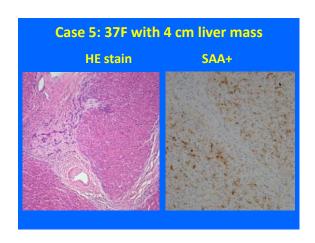

Histologic feature	FNH	Inflammatory HCA	p value
Sinusoidal dilatation	18%	83%	<0.001
Inflammation	40%	60%	0.08
Steatosis	21%	57%	0.001
Fibrous bands	90%	26%	<0.001
Ductular reaction	83%	43%	<0.001

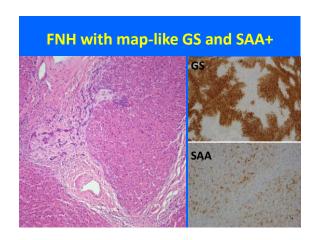

FNH vs. IHCA: challenges in interpretation


- Map-like GS patterns on needle biopsies
- Map-like vs. diffuse GS pattern
- 'Pseudo map-like' pattern
- SAA in FNH and adjacent liver
- Use of CRP in addition to SAA

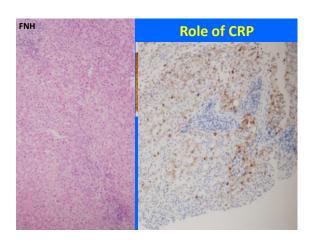


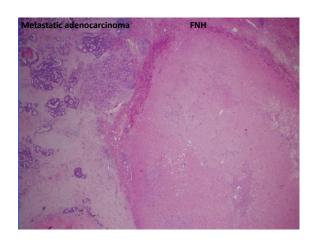


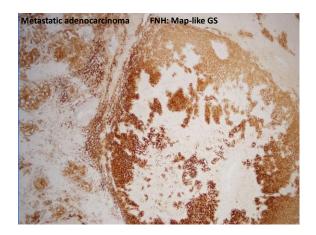








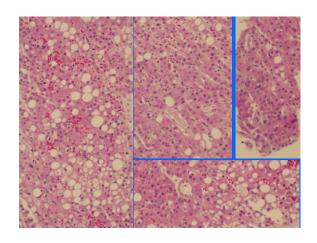


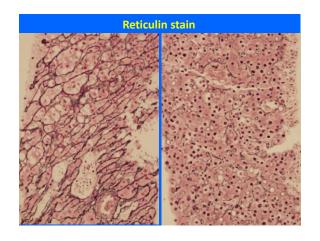

	IHA	FNH
SAA+ (>50%)	80%	5-10%
CRP+ (>50%)	100%	20-25%

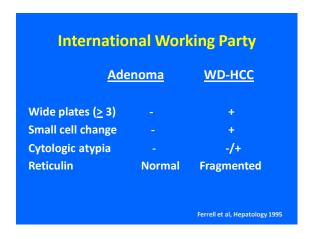
FNH-like lesion

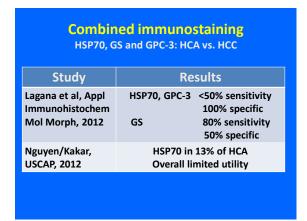
Morphology and GS staining similar to classic FNH

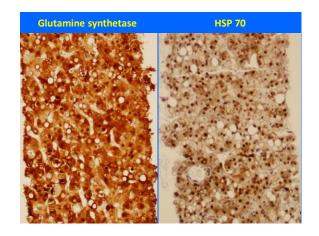
- Adjacent to tumors
- Cirrhosis
- Vascular abnormalities



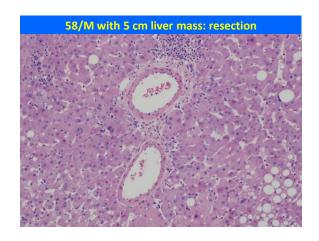


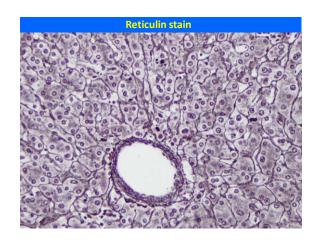

HCC vs. hepatocellular adenoma

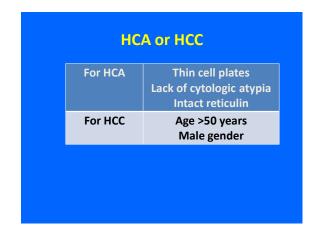

Case 6

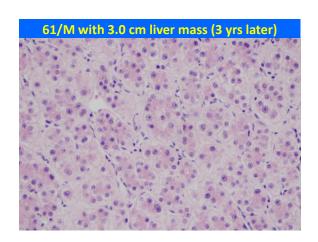

- 60/M with diabetes and renal failure
- CT showed a 3.9 cm mass, concerning for HCC or metastatic carcinoma, but appearance was nonspecific and can represent hepatocellular adenoma

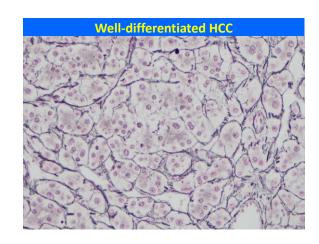


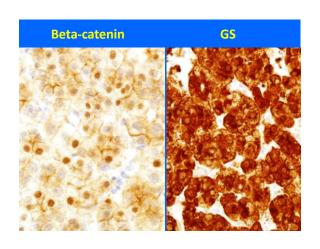


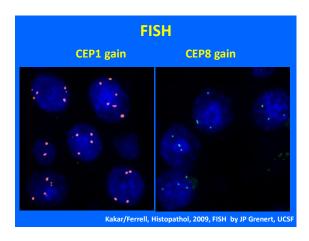












β-catenin activated HCA, or β-catenin activated HCC Morphology* HCC* Cytogenetics**

Atypia:

70%

*B Sage, Hepatol 2008 "Evason/Kakar, Human Pathol 2012

Concurrent / follow-up: Chromosomal changes:

What makes a tumor malignant?

Source	Definition
Webster Medical Dictionary	Ability to invade local tissues
Stedman Medical Dictionary	Ability to spread to distant sites (metastasize)
Dorland Medical dictionary	
Robbins' Pathology	

Is β-catenin activated 'HCA' malignant?

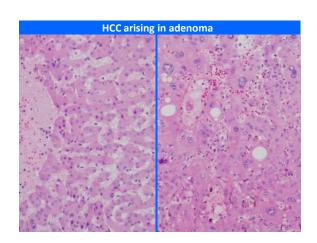
Local invasion (recurrence)	Yes
Metastasis	Yes
Pathologic features	Yes/no
Supportive evidence	Yes

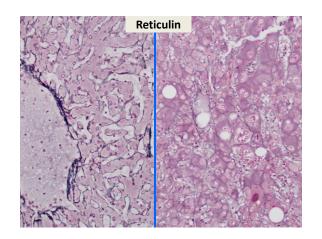
High risk factors Focal atypical Age/gender **Immunostaining** morphology Pseudoacinar Male gender Nuclear β-catenin Small cell Older age Diffuse GS change (>50 yrs) Thick plates **Reticulin loss** Well-differentiated hepatocellular neoplasm with atypical features, HCC or β-catenin activated hepatocellular adenoma

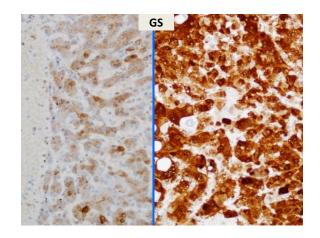
Hepatocellular adenomas in a large community population 2000-2010: reclassification per current WHO classification and results of long-term follow-up

GL Genrich¹, N Shafizadeh², L Ferrell¹, S Kakar¹

¹ Pathology, UCSF Medical Center, San Francisco, CA.

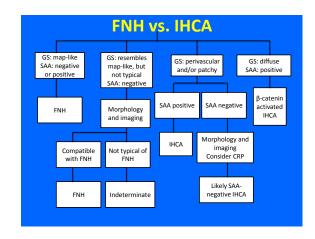

² Pathology, Southern California Permanente Medical Group, Woodland Hills, CA


Table 3: Comparison of adenoma subtype in this study with 2 French studies


	A. Present study	B. Bioulac-Sage, Hepatology, 2007 (n=93)	C. Bioulac-Sage, Am J Surg Path, 2012 (n=137)	p value A vs. B/A vs. C
HNF1-α inactivated	29%	33%	22%	0.16/0.12
Inflammatory	32%	40%	53%	0.09/0.007
β-catenin activated, non-inflammatory	0	17%	2%	0.01/0.57
IHA with β-catenin activation	3%	2%	11%	0.55/0.16
Unclassified	36%	8%	13%	0.001/0.004

CONCLUSIONS

Most β-catenin activated hepatocellular tumors can be diagnosed as HCC with careful attention to morphology and reticulin staining pattern, especially in resection specimens.


HCC in adenoma		
Adenoma	Presence of HCC	
Stoot, HPB, 2010 studies from 1970-2009	68/1635= 4%	
Size >5 cm <5 cm	>95% ~4%	

Stain	Interpretation
Reticulin	Loss: HCC
GS	Diffuse: β-catenin activation
	Map-like: FNH Other patterns: HCA
SAA	Inflammatory HCA

Well-differentiated hepatocellular lesion		
Stain	Utility	
Reticulin	нсс	
SAA	Inflammatory HCA	
GS	Map-like: FNH Diffuse: Beta-catenin mutated	
Stain	Utility	
LFABP	HNF1-alpha inactivated HCA	
Beta-catenin	Beta-catenin mutated	
CRP	Inflammatory	
Glypican-3, HSP70	нсс	

	FNH	Inflammatory HCA
Central scar	Present	Absent
Contrast CT enhancement	Early homogenous	Heterogeneous and persistent
MRI TI-weighted	Hypointense	Hyperintensity
MRI T2-weighted	Hypointense	Strong hyperintensity

Feature	Pitfall	Approach
SAA staining in peritumoral liver in needle biopsy that missed the lesion	Misinterpreted as evidence of IHA, especially when other peritumoral features like inflammation, sinusoidal dilatation and ductular reaction are also present	SAA+ is not specific for IHA. Interlobular bile ducts and absence of diffuse CD34 staining can help in confirming that the biopsy comprises non-neoplastic liver.
SAA negative in a lesion that shows typical features of IHA	Misinterpreted as absolute evidence against IHA	SAA can be negative in 5-10% of IHA. Imaging and absence of map-like GS staining is needed to confirm IHA in these cases.
SAA positive in a lesion that shows typical features of FNH	Misinterpreted as IHA	Focal SAA can be seen in 15% of FNH. Map-like GS confirms FNH irrespective of SAA.
Perivenous and patchy GS in a lesion that shows typical features of IHA	Misinterpreted as map-like pattern of FNH	This staining is common in IHA. It is distinguished from map-like pattern by (i) lack of anastamosing pattern of staining. (ii) staining is heterogeneous and weak compared to homogeneous strong staining in map-like pattern.
Diffuse GS staining	Misinterpreted as map-like pattern of FNH	Diffuse GS is seen in beta-catenin- activated tumors and does not have areas of periseptal sparing of map-like pattern. Most also show nuclear beta-catenin.
Pseudo-map like GS pattern	Misinterpreted as map-like pattern of FNH	This is seen at the periphery of IHA and 10% of FNH. When seen in biopsies, it is more likely to be FNH. Diagnosis on needle biopsy may remain indeterminate if imaging and SAA are not helpful.

